【特集】

OECD 化学物質対策の動向(第9報)

- 第 17 回 OECD 高生産量化学物質初期評価会議 (2003 年アローナ) -

Progress on OECD Chemicals Programme (9) - SIAM 17 in Arona, 2003

高橋美加¹·松本真理子¹·川原和三²·菅野誠一郎³· 菅谷芳雄⁴·広瀬明彦¹・鎌田栄一¹・江馬 眞¹

1:国立医薬品食品衛生研究所安全性生物試験研究センター総合評価研究室

2:(財)化学物質評価研究機構安全性評価技術研究所

3:(独) 産業医学総合研究所作業環境計測研究部

4:(独) 国立環境研究所化学物質環境リスク研究センター

Mika Takahashi¹, Mariko Matsumoto¹, Kazumi Kawahara², Seiichirou Kanno³, Yoshio Sugaya⁴, Akihiko Hirose¹, Eiichi Kamata¹, and Makoto Ema¹

1. Division of Risk Assessment, Biological Safety Research Center,

National Institute of Health Sciences

- 2. Chemicals Assessment Center, Chemicals Evaluation and Research Institute, Japan
- 3. Department of Work Environment Evaluation, National Institute of Industrial Health
- 4. Research Center for Environmental Risk, National Institute for Environmental Studies

要旨:第17回 OECD 高生産量化学物質初期評価会議(SIAM17)が2003年11月にイタリア・アローナで開催された。日本が提出した6物質の初期評価文書については全ての評価結果の合意が得られた。本稿では本会議で合意の得られたこれらの物質の初期評価文書について紹介する。

キーワード: OECD、HPV プログラム、SIDS 初期評価会議

Abstract: The 17th Screening Information Data Set (SIDS) Initial Assessment Meeting (SIAM 17) was held in Arona, Italy, hosted by the European Commission. The initial assessment documents of six substances (CAS numbers: 96-29-7,

118-79-6, 461-58-5, 611-19-8, 6165-51-1, 12125-02-9) at SIAM 17 were submitted by the Japanese Government with or without the International Council of Chemical Associations (ICCA) and all of them were agreed at the meeting. In this report, the

documents of these substances are introduced.

Keywords: OECD, HPV program, SIDS Initial Assessment Meeting

1 はじめに

経済協力開発機構 (Organisation for Economic Co-operation and Development: OECD) の加盟各国における高生産量化学物質 (High Production Volume Chemical: HPV) について、1992 年に始まった OECD 高生産量化学物質点検プログラム (HPV Program) により安全性の評価が行われている (長谷川ら 1999a)。日本政府は初回より評価文書を提出しており、第 16回までの初期評価会議 (Screening Information Data Set (SIDS) Initial Assessment Meeting: SIAM) において結論及び勧告が合意された化学物質のうち、日本政府が担当した評価文書における曝露情報、環境影響及び健康影響については既に紹介してきた(長谷川ら 1999b、2000、2001; 高橋ら 2004、2005a、2005b、2006 印刷中)。

国際化学工業協会協議会 (International Council of Chemical Associations: ICCA) による評価文書の原案作成に伴い日本においても 2001 年から、日本政府に加え日本化学工業協会加盟企業も評価文書の原案を作成している。

評価文書は、物性、曝露情報、健康影響及び環境影響に関する記述から構成されている。本稿では第 17 回 SIAM (SIAM17) で合意に至った化学物質名及び日本担当物質の評価文書の概要を紹介する。

2 SIAM17 で合意された化学物質名と日本担当物質の初期評価内容

2003 年 11 月にアローナ(イタリア)で開催された SIAM17 において、26 物質及び 4 カテゴリー(それぞれ 2、10、5 及び 7 物質を含む)24 物質、計 50 化学物質の初期評価文書が審議され、表 1 に示す物質の初期評価結果および勧告が合意された。SIAM における合意は FW (The chemical is a candidate for further work.) または LP (The chemical is currently of low priority for further work.) として示されている。FW は「今後も追加の調査研究作業が必要である」、LP は「現状の使用状況においては追加作業の必要はない」ことを示す。日本政府が担

当した化学物質の初期評価文書の概要を以下に示す。

(1) 2-Butanoneoxime (96-29-7) (原案作成: ICCA 日本及び米国企業)

1) 曝露状況

本物質は塗料の皮張り防止剤、シリコン樹脂の硬化剤及びウレタンのブロッキング剤として 用いられている。本物質を含む製品を用いる場合、吸入により消費者曝露の可能性がある。職 業曝露の主要経路は吸入と考えられる。

2)環境影響

本物質が大気に放出された場合、約 63%が大気にとどまり、約 17%が水圏に、約 20%が土壌に分布する。本物質は容易に生物分解しない (OECD TG 301C) が、水生生物における生物濃縮性は低い (生物濃縮係数 BCF: 0.5-5.8、OECD TG 305C)。水生生物に対する急性毒性では、藻類の半数影響濃度 (EC50) は 6.1 mg/L (72 時間、生長阻害: OECD TG 201)、ミジンコの EC50 は 201 mg/L (48 時間、遊泳阻害: OECD TG 202)、魚類の半数致死濃度 (LC50) は>100 mg/L (96 時間、OECD TG 203) であった。慢性毒性では、藻類の最大無影響濃度 (NOEC) は 1.02 mg/L (72 時間、生長阻害: OECD TG 201)、ミジンコの NOEC は 100 mg/L (21 日間、繁殖阻害: OECD TG 211)、魚類の NOEC は 50 mg/L (14 日間、魚類延長毒性試験: OECD TG 204) であった。

3)健康影響

本物質は消化管と皮膚から速やかに吸収され、速やかに代謝されて尿中に排泄される。

ラットの単回経口投与毒性試験における 50%致死量(LD_{50})は $900\sim2,528$ mg/kg であり、毒性症状として全身衰弱、振戦等が認められている。単回経皮毒性試験におけるウサギの経皮 LD_{50} は $1,000\sim1,800$ mg/kg、ラットの単回吸入毒性試験(OECD TG 403)における LC_{50} は >1,400 ppm (>4,800 mg/m³)と判定された。

ウサギの皮膚に対して弱い刺激性、眼に対しては強い刺激性が認められた。モルモットにおいて皮膚感作性が認められた。

マウスに 1 日 6 時間、0、3、10、30 及び 100 ppm を週 5 日曝露した 13 週間吸入毒性試験において、10 ppm (36 mg/m^3) 以上で嗅上皮の変性が認められ、無毒性量(NOAEL)は 3 ppm (10.8 mg/m^3) とされた。マウスに 1 日 6 時間、0、25、100 及び 400 ppm を週 5 日曝露した 4 週間吸入毒性試験において、400 ppm (1440 mg/m^3) で脾臓及び副腎重量の増加、メトヘモグロビンレベルの上昇が認められ、NOAEL は 100 ppm (360 mg/m^3) とされた。ラットに 1 日 6

化学生物総合管理 第2巻第1号 (2006.6) 163-175 頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

時間、0、25、100 及び 400 ppm を週 5 日曝露した 4 週間反復吸入毒性試験において、100 ppm (360 mg/m³) 以上でメトヘモグロビンレベルの上昇が認められ、NOAEL は 25 ppm (90 mg/m³) とされた。

ラットに週 5 日で 13 週間、0、25、75 及び 225 mg/kg/day を強制経口投与した反復経口投与毒性試験では、25 mg/kg/day 以上で溶血性貧血、脾臓及び肝臓の重量増加が認められ、最低毒性量(LOAEL)は 25 mg/kg/day とされた。また、ラットに週 5 日で 13 週間、0、40、125 及び 400 mg/kg/day を強制経口投与した反復経口投与神経毒性試験では、40 mg/kg/day 以上でメトヘモグロビンレベルの上昇がみられた。400 mg/kg/day の投与直後にみられた一過性の神経症状以外、神経毒性影響は認められなかった。ラットに 0、4、20 及び 100 mg/kg/day を強制経口投与した 28 日間反復経口投与毒性試験では、20 mg/kg/day 以上で雌雄に網状赤血球率の上昇及び脾臓への影響(うっ血、髄外造血亢進、ヘモジデリン顆粒増加)が認められ、NOAELは 4 mg/kg/day とされた。雄ラットに 0、250 及び 500 mg/kg/day を強制経口投与した肝毒性を検討するための 28 日間反復経口投与毒性試験において、肝ペルオキシソーム増殖は認められなかったが、250 mg/kg/day 以上で肝グルタチオンの増加が認められ、LOAELは 250 mg/kg/day とされた。

ラットに飲水中 0、312、625、1,250、2,500 及び 5,000 ppm (およそ、雄に 0、25、50、100、175 及び 280 mg/kg/day、雌に 0、30、65、120、215 及び 335 mg/kg/day) で投与した 13 週間反復経口投与毒性試験において、625 ppm 以上で雌雄に造血細胞の増殖が認められ、NOAELは 312 ppm (25 mg/kg/day) とされた。また、雌雄マウスに飲水中 0、625、1,250、2,500、5,000 及び 10,000 ppm (およそ、雄に 0、110、200、515、755 及び 1,330 mg/kg/day、雌に 0、145、340、630、1,010 及び 3,170 mg/kg/day)で投与した 13 週間反復経口投与毒性試験において、1,250 ppm 以上で雄の膀胱の移行上皮過形成がみられ、NOAELは 625 ppm (110 mg/kg/day) とされた。

雌雄ラットに交配前 2 週間及び交配期間、雄では計 48 日間、雌では妊娠期間及び分娩後哺育 3 日まで、0、10、30 及び 100 mg/kg/day を強制経口投与した経口投与簡易生殖毒性試験(OECD TG 421)では、10 mg /kg/day 以上で雌雄に脾臓のうっ血、色素沈着、髄外造血などがみられた。雄の生殖と児の発生に及ぼす影響は認められず、NOAEL は 100 mg/kg/day (最高用量) とされた。雌では 100 mg/kg/day で分娩率が低値を示したので、NOAEL は 30 mg/kg/day とされた。

ラットの雌雄 (Fo) に交配前 10 週間から計 13 週間、0、10、100 及び 200 mg/kg/day を強制

経口投与し、さらに、雌雄 F_1 に交配前 10 週間から計 13 週間、0、10、100 及び 200 mg/kg/day を強制経口投与した二世代繁殖毒性試験では、10 mg/kg/day 以上で F_0 及び F_1 の雌雄に髄外造血やヘモジデリン沈着が認められたが、生殖発生毒性に関する影響は認められず、NOAEL は 200 mg/kg/day (最高用量) とされた。

ラットの妊娠 6-15 日に 0、60、200 及び 600 mg/kg/day を強制経口投与した発生毒性試験 (OECD TG 414) では、60 mg/kg/day 以上で母体の脾臓肥大がみられたが、発生への悪影響は認められず、発生毒性の NOAEL は 600 mg/kg/day とされた。また、ウサギの妊娠 6-18 日に 0、8、14、24 及び 40 mg/kg/day を強制経口投与した催奇形性試験(OECD TG 414)では、40 mg/kg/day で流産や妊娠ウサギの死亡がみられ、24 mg/kg/day 以上で妊娠ウサギの体重の低下が認められたことから、母体毒性の NOAEL は 14 mg/kg/day、発生毒性の NOAEL は 24 mg/kg/day とされた。

In vitro 及び in vivoの遺伝毒性試験の結果から本化学物質は遺伝毒性を示さないと結論された。

2年間、雌雄ラットに 0、15、75 及び 374 ppm、雌雄マウスに 0、15、75 及び 375 ppm を 1 日 6 時間、週 5 日曝露した反復吸入癌原性試験では、雄ラットの 374 ppm (1,331 mg/m³) 及び雄マウスの 375 ppm (1,335 mg/m³) で肝臓がんの増加が認められた。

4)結論と勧告

本物質はFWと勧告され、環境曝露量及び消費者曝露量の追加調査が推奨された。

(2) 2,4,6-Tribromophenol (118-79-6) (原案作成: ICCA 日本企業)

1)曝露状況

本物質は難燃性付与剤及びその中間体として用いられている。製品の中間体であれば、消費者曝露は起こりにくいが、本物質の用途から環境に排出する可能性がある。職業曝露の主要経路は吸入及び経皮と考えられる。

2)環境影響

本物質が大気に放出された場合、約 29%が大気にとどまり、約 21%が水圏に、約 48%が土壌に分布する。本物質は易分解性ではないが、環境中で生物分解し(生物化学的酸素要求量BOD: 49%)、また、水生生物における生物濃縮性は高くない(BCF: 513)。水生生物に対する急性毒性では、藻類の EC_{50} は 0.76 mg/L (72 時間、生長阻害: OECD TG 201)、ミジンコの EC_{50} は 0.26 mg/L (48 時間、遊泳阻害: OECD TG 202)、魚類の LC_{50} は 1.1 mg/L (96 時間、

OECD TG 203) であった。慢性毒性では、藻類の NOEC は 0.22 mg/L (72 時間、生長阻害: OECD TG 201)、ミジンコの NOEC は 0.10 mg/L (21 日間、繁殖阻害: OECD TG 211) であった。

3)健康影響

本物質は消化管から速やかに吸収され、速やかに代謝されて主に尿中に排泄される。

ラットの単回経口投与毒性試験 (OECD TG 401) での LD_{50} は 1,486 mg/kg、ラットの単回 経皮投与毒性試験 (OECD TG 402) での LD_{50} は 2,000 mg/kg 以上、ラットの単回吸入毒性試験での LC_{50} は 50 mg/L と報告されている。

ウサギの皮膚に対して刺激性は認められないが、眼に対しては中程度の刺激性がみられた。 モルモットにおいて皮膚感作性が認められた。

ラットに交配前 2 週間及び交配期間を含め、雄では計 48 日間、雌では分娩後哺育 3 日まで、0、100、300 及び 1,000 mg/kg/day を強制経口投与した反復投与毒性・生殖発生毒性併合試験 (OECD TG 422) では、300 mg/kg/day 以上の雌雄で流涎がみられ、さらに雄で血清クレアチニンの高値が認められたことから、反復投与毒性の NOAEL は 100 mg/kg/day とされた。最高用量の 1,000 mg/kg/day で雌雄の生殖能に及ぼす影響は認められないが、哺育 4 日の生存率と哺育 0 及び 4 日の体重が低値を示したことから、児では 1,000 mg/kg/day で発育抑制が認められ、生殖発生毒性の NOAEL は 300 mg/kg/day とされた。

細菌を用いる復帰突然変異試験では陰性であった。チャイニーズ・ハムスター培養細胞を用いる染色体異常試験では、連続処理では陰性であったが、S9 mix 存在下及び非存在下の短時間処理では染色体異常の誘発作用が認められたことから、染色体異常試験では陽性と判定された。しかしながら、*in vivo* でのマウスの小核試験では投与可能な最高用量においても陰性であったことから、本物質は *in vivo* では遺伝毒性を発現しないと結論された。

4) 結論と勧告

本物質はFWと勧告され、職業曝露量や殺菌剤としての使用量の追加調査が推奨された。

(3) Cyanoguanidine (461-58-5) (原案作成: ICCA 日本企業)

1) 曝露状況

本物質はメラミンやグアニジン塩などの製造原料、化学肥料や爆薬などの原料、エポキシ樹脂硬化剤、安定剤、医薬品、合成洗剤、粘度調整剤として用いられている。また、間接食品添加物として米国食品医薬品局の承認を得ている。職業曝露の主要経路は吸入及び経皮と考えら

れる。また、本物質を含む製品から、吸入及び経皮経路による消費者曝露の可能性がある。

2)環境影響

本物質が水圏に放出された場合、大気や土壌には分布しない。大気や土壌に放出された場合、主に水圏と土壌に分布する。本物質は容易に生物分解しないが、水生生物における生物濃縮性は低い(BCF: <3.1、OECD TG 305C)。水生生物に対する急性毒性では、藻類の EC $_{50}$ は 935 mg/L、NOEC は 171 mg/L(72 時間、生長阻害: OECD TG 201)、ミジンコの EC $_{50}$ は>1,000 mg/L(48 時間、遊泳阻害: OECD TG 202)、魚類の LC $_{50}$ は>100 mg/L(96 時間、OECD TG 203)であった。慢性毒性では、ミジンコの NOEC は 25.0 mg/L(21 日間、繁殖阻害: OECD TG 211)、魚類の LC $_{50}$ は>100 mg/L(21 日間、繁殖阻害: OECD TG 211)、

3)健康影響

ラットの単回経口投与毒性試験での LD_{50} は $30{,}000~\mathrm{mg/kg}$ 以上と報告されている。

モルモットの皮膚に対して刺激性が認められた。モルモットにおいて皮膚感作性はみられなかった。

ラットに交配前 2 週間及び交配期間を含め、雄では計 44 日間、雌では分娩後哺育 3 日まで、0、40、200 及び 1,000 mg/kg/day を強制経口投与した反復投与毒性・生殖発生毒性併合試験 (OECD TG 422) では、最高用量の 1,000 mg/kg/day でも反復投与毒性及び生殖発生毒性に関する影響は認められず、反復投与毒性と生殖発生毒性の NOAEL は 1,000 mg/kg/day とされた。

細菌を用いる復帰突然変異試験及びチャイニーズ・ハムスター培養細胞を用いる染色体異常 試験では陰性あったことから、本物質は遺伝毒性を発現しないと結論された。

ラットに 2 年間 0、2.5 及び 5.0% (雄では 0、837.2 及び 1958.6 mg/kg/day、雌では 0、1001.3 及び 2169.2 mg/kg/day)を混餌投与した発がん性試験において、腫瘍発生率の上昇は認められなかった。

4) 結論と勧告

本物質はLPと勧告された。

(4) 1-Chloro-2-(chloromethyl)-Benzene (611-19-8) (原案作成:ICCA 日本企業)

1) 曝露状況

本物質は農薬の中間体として用いられている。本物質は製品の中間体であり、消費者曝露は起こりにくい。職業曝露の主要経路は吸入及び経皮と考えられる。

2)環境影響

化学生物総合管理 第2巻第1号(2006.6)163-175頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

- 第 17 回 OECD 高生産量化学物質初期評価会議(2003 年アローナ) -

本物質が水圏に放出された場合、約 74%が水圏にとどまり、約 12%が大気に、約 8%が沈殿物、約 7%が土壌に分布する。本物質が大気に放出された場合、約 64%が大気にとどまり、約 35%が土壌に分布する。本物質が土壌に放出された場合、大気や水圏には分布しない。本物質は容易に生物分解しないが、水生生物における生物濃縮性は低いと考えられる。水生生物に対する急性毒性では、藻類の EC_{50} は 0.78 mg/L (72 時間、生長阻害:OECD TG 201)、ミジンコの EC_{50} は 0.38 mg/L (48 時間、遊泳阻害:OECD TG 202)、魚類の LC_{50} は 0.27 mg/L (96 時間、OECD TG 203) であった。慢性毒性では、藻類の NOEC は 0.045 mg/L (72 時間、生長阻害:OECD TG 211) であった。

3)健康影響

ラットの単回経口投与毒性試験における LD_{50} は $350\sim951$ mg/kg であった。単回経皮毒性試験においてウサギの経皮 LD_{50} は $1,700\sim2,200$ mg/kg、ラットの経皮 LD_{50} は 2,000 mg/kg 以上、ラットの単回吸入毒性試験(OECD TG 403)での LC_{50} は 2.8 mg/L と判定された。主に本物質の投与部位(胃、皮膚、肺)に刺激による組織学的損傷が引き起こされた。

ウサギの皮膚と眼に対して刺激性が認められた。

ラットに 1 日 6 時間、0、0.01、0.03 及び 0.10 mg/L を週 5 日曝露した 4 週間反復吸入毒性 試験 (OECD TG 412) では、0.10 mg/L で肺重量の増加、鼻粘膜、気管及び気管支の損傷、気 管気管支リンパ節のリンパ組織過形成が認められ、NOAEL は 0.03 mg/L と判定された。

ラットに交配前 2 週間及び交配期間を含め、雄では計 45 日間、雌では分娩後哺育 3 日まで、0、2、10 及び 50 mg/kg/day を強制経口投与した反復投与毒性・生殖発生毒性併合試験(OECD TG 422)では、10 mg/kg/day 以上の雄、50 mg/kg/day の雌に前胃壁の肥厚、扁平上皮の増生、びらん及び潰瘍が認められ、反復投与毒性の NOAEL は雄で 2 mg/kg/day、雌で 10 mg/kg/day とされた。生殖発生毒性に関する影響は認められず、生殖発生毒性の NOAEL は 50 mg/kg/day (最高用量)とされた。

細菌を用いる復帰突然変異試験では S9 mix 存在及び非存在下で陰性であったが、S9 mix 非存在下で弱い陽性を示す結果もみられた。チャイニーズ・ハムスター培養細胞を用いる染色体異常試験では、細胞毒性を示す用量において S9 mix 存在及び非存在下で陽性であった。しかし、 in vivo でのマウスの小核試験では投与可能な最高用量において陰性であったことから、本物質は in vivo では遺伝毒性を発現しないと結論された。

4)結論と勧告

本物質はLPと勧告された。

(5) 1,4-Dimethyl-2-(1-phenylethyl)benzene (6165-51-1) (日本政府作成)

1) 曝露状況

本物質は PCBs の代替物質として用いられ、感圧紙用染料やコンデンサーオイルとして使用されている。本物質を含む製品からの、吸入及び経皮経路による消費者曝露の可能性がある。

職業曝露の主要経路は吸入及び経皮と考えられる。

2)環境影響

本物質が土壌や大気に放出された場合は主に土壌に分布し、水圏に放出された場合は主に沈殿物に分布する。本化学物質は容易に生物分解しない(OECD TG 301C)が、水生生物における生物濃縮性は高くない(生物濃縮係数 BCF: 760-620、OECD TG 305)。水生生物に対する急性毒性では、藻類の EC50 は 0.93-1.54 mg/L 以上(72 時間、生長阻害: OECD TG 201)、ミジンコの EC50 は 0.25 mg/L (48 時間、遊泳阻害: OECD TG 202)、魚類の LC50 は 0.31 mg/L (96 時間、OECD TG 203)であった。慢性毒性では、藻類の NOEC は 0.047-0.73 mg/L (72 時間、生長阻害: OECD TG 201)、ミジンコの NOEC は 0.009 mg/L (21 日間、繁殖阻害: OECD TG 211)であった。

3)健康影響

ラットの単回経口投与毒性試験(OECD TG 401)では、最高用量 2,000 mg/kg の投与後 1~2

日に、雄1匹及び雌2匹の死亡が認められ、 LD_{50} は2,000 mg/kg 以上と考えられた。

ラットに交配前 2 週間及び交配期間を含め、雄では計 47 日間、雌では分娩後哺育 3 日まで、0、12.5、50 及び 200 mg/kg/day を強制経口投与した反復投与毒性・生殖発生毒性併合試験 (OECD TG 422) では、雄では 12.5 mg/kg/day 以上で副腎の重量低値及び東状帯細胞萎縮がみられ、雌では 200 mg/kg/day で肝重量の高値及び小葉中心性肝細胞肥大が認められた。これらの結果から、反復投与毒性における雄の LOAEL は 12.5 mg/kg/day、雌の NOAEL は 50 mg/kg/day とされた。生殖発生毒性に関する影響は認められず、生殖発生毒性の NOAEL は 200 mg/kg/day (最高用量) とされた。

細菌を用いる復帰突然変異試験及びチャイニーズ・ハムスター培養細胞を用いる染色体異常 試験では陰性あったことから、本物質は遺伝毒性を発現しないと結論された。

4)結論と勧告

本物質はFWと勧告され、溶剤や PCB 代替物としての使用、または、本物質を含む紙のリサ

化学生物総合管理 第2巻第1号 (2006.6) 163-175 頁

連絡先:〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

イクル過程に基づく、環境曝露量、職業曝露量及び消費者曝露量の追加調査が推奨された。

(6) Ammonium chloride (12125-02-9) (原案作成: ICCA 日本企業)

1) 曝露状況

本物質は主に水田用肥料として使用されている。吸入及び経皮により消費者曝露の可能性がある。職業曝露の主要経路は吸入及び経皮と考えられる。

2)環境影響

環境に放出された場合、本物質はアンモニウムイオン及び塩化物イオンとなり水圏に分布する。生物分解に関するデータは無いが、アンモニア(NH_3 または NH_4 +)は生物が利用する前に様々な細菌によって無機化され、亜硝酸イオン(NO_2 -)となる。また、 NH_3 、 NH_4 +、Cl-は生物の共通構成要素である。水生生物に対する急性毒性では、藻類の EC_{50} は 1,300 mg/L (5 日間、生長阻害)、ミジンコの LC_{50} は 101 mg/L (48 時間、遊泳阻害)、魚類の LC_{50} は 96.2-218 mg/L (96 時間)であった。慢性毒性では、藻類の NOEC は 26.8 mg/L (10 日間、生長阻害)、ミジンコの NOEC は 14.6 mg/L (21 日間、繁殖阻害)、魚類の NOEC は 8.0-23.9 mg/L (28 または 44日間)であった。

3)健康影響

本物質は消化管から速やかに吸収され、肝臓でアミノ酸やタンパク質の合成に利用される。

単回経口投与毒性試験では、 LD_{50} は 1,630 mg/kg (雄ラット)、1,220 mg/kg (雌ラット)、1,300 mg/kg (雄マウス) と判断された。毒性症状として、ラットでは呼吸困難、無欲、異常姿勢が認められ、雄マウスでは下痢、チアノーゼ、よろめき歩行が認められた。

ウサギの皮膚及び眼に対して中程度の刺激性が認められた。モルモットにおいて皮膚感作性 はみられなかった。

雄ラットに 12,300 ppm (684 mg/kg/day) を 70 日間混餌投与した反復投与毒性試験では、毒性影響は認められず、NOAEL は 684 mg/kg/day とされた。また、ラットの妊娠 7-10 日に 8.9 mg/kg/day を強制経口投与した試験では、母体毒性及び発生毒性に対する影響は認められなかった。

細菌を用いる復帰突然変異試験では陰性であった。S9 mix 非存在下で行われたチャイニーズ・ハムスター培養細胞を用いる染色体異常試験では陽性であったが、これは本物質の酸性度に起因した結果と判定された。*in vivo* でのマウスの小核試験では投与可能な最高用量においても陰性であったことから、*in vivo* において遺伝毒性は示さないと結論された。

化学生物総合管理 第2巻第1号 (2006.6) 163-175 頁

連絡先: 〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

発がん性や泌尿器系における発がん促進効果について、ラットやマウスを用いた試験が行われたが、発がん性は認められなかった。

4) 結論と勧告

本物質はLPと勧告された。

3 おわりに

本稿では、SIAM17 で合意された化学物質名および日本担当物質の初期評価文書について紹介した。SIAM で合意された物質の初期評価文書は出版され、インターネットの OECD web サイト(http://cs3-hq.oecd.org/scripts/hpv/) でも入手が可能である。

参考文献:

- 長谷川隆一,中館正弘,黒川雄二(1999a): OECD 化学物質対策の動向. J. Toxicol. Sci., 24,
 app. 11-19.
- 長谷川隆一,鎌田栄一,広瀬明彦,菅野誠一郎,福間康之臣,高月峰夫,中館正弘,黒川雄二
 (1999b): OECD 化学物質対策の動向(第2報). J. Toxicol. Sci., 24, app. 85-92.
- 長谷川隆一, 小泉睦子, 鎌田栄一, 広瀬明彦, 菅野誠一郎, 高月峰夫, 黒川雄二(2000):OECD 化学物質対策の動向(第3報). J. Toxicol. Sci., 25, app. 83-96.
- 長谷川隆一, 小泉睦子, 広瀬明彦, 菅原尚司, 黒川雄二(2001): OECD 化学物質対策の動向 (第4報). J. Toxicol. Sci., 26, app. 35-41.
- 高橋美加,平田睦子,松本真理子,広瀬明彦,鎌田栄一,長谷川隆一,江馬 眞(2004):
 OECD 化学物質対策の動向(第5報). 国立医薬品食品衛生研究所報告、122、37-42.
- · 高橋美加,平田睦子,松本真理子,広瀬明彦,鎌田栄一,長谷川隆一,江馬 眞(2005a): OECD 化学物質対策の動向(第6報). 化学生物総合管理,1,46-55.
- 高橋美加,平田睦子,松本真理子,広瀬明彦,鎌田栄一,長谷川隆一,江馬 眞(2005b):OECD 化学物質対策の動向(第7報). 国立医薬品食品衛生研究所報告,123,46-52.
- 高橋美加,松本真理子,川原和三,菅野誠一郎,菅谷芳雄,広瀬明彦,鎌田栄一,江馬 眞(2006): OECD 化学物質対策の動向(第8報)、化学生物総合管理、2.147-162。

付表 SIAM17 で議論された物質の合意結果

CAS No.	物質名	担当国	結果
78-87-5	1,2-Dichloropropane	CH/ICCA	LP
87-56-9	Mucochloric acid	DE/ICCA	LP
96-29-7	2-Butanoneoxime	JP/ICCA+US	FW
96-31-1	1,3-Dimethylurea	DE/ICCA	LP
98-59-9	4-Methylbenzenesulfonyl chloride	КО	LP
99-54-7	1,2-Dichloro-4-nitrobenzene	DE/ICCA	FW
99-99-0	4-Nitrotoluene	DE/ICCA	LP
106-46-7	1,4-Dichlorobenzene	FR:eu	FW
107-86-8	3-Methyl-2-butenal	DE/ICCA	LP
110-19-0	Isobutyl acetate	US/ICCA	LP
110-93-0	6-Methylhept-5-en-2-one	DE/ICCA	HH: FW
			ENV: LP
115-11-7	Isobutylene	FR/ICCA	LP
118-79-6	2,4,6-Tribromophenol	JP/ICCA	FW
120-80-9	1,2-Dihydroxybenzene	FR/ICCA	LP
288-32-4	Imidazole	DE/ICCA	HH: FW
			ENV: LP
461-58-5	Cyanoguanidine	JP /ICCA	LP
611-19-8	1-Chloro-2-(chloromethyl)-Benzene	JP/ICCA	LP
919-30-2	3-Aminopropyltriethoxysilane	US/ICCA	LP
947-04-6	Dodecane-12-lactam	DE/ICCA	LP
1760-24-3	N-[3-(Trimethoxysilyl)propyl]ethylenediamine	US/ICCA	LP
3268-49-3	3-(Methylthio) propionaldehyde	DE/ICCA	LP
4454-05-1	3,4-Dihydro-2-methoxy-2H-pyran	DE/ICCA	LP
6165-51-1	1,4-Dimethyl-2-(1-phenylethyl)benzene	JP	FW
6422-86-2	Di(2-ethylhexyl)terephthalate	US/ICCA	HH: LP
			ENV: FW
10101-41-	Calcium sulfate, dihydrate	KO	LP
4			
12125-02-	Ammonium chloride	JP /ICCA	LP
9			
カテゴリー名(CAS No.)		担当国	結果
Isobutyl Acid & Anhydride		US/ICCA	LP
(2 chemicals	s: 79-31-2, 97-72-3)		
Linear Alkylbenzene Sulfonates		US/ICCA	HH: LP
(10 chemicals: 1322-98-1, 25155-30-0, 26248-24-8,			ENV: -
27636-75-5, 68081-81-2, 68411-30-3, 69669-44-9,			
85117-50-6, 90194-45-9, 127184-52-5)			

化学生物総合管理 第2巻第1号 (2006.6) 163-175 頁

連絡先:〒158-8501 東京都世田谷区上用賀 1-18-1 E-mail: ema@nihs.go.jp

Methylenediphenyldiisocyanates (5 chemicals: 101-68-8, 2536-05-2, 5873-54-1, 9016-87-9, 26447-40-5)	BE+US:eu	HH: FW ENV: LP
Propylene Glycol Ethers (7 chemicals: 5131-66-8, 20324-33-8, 35884-42-5,	US/ICCA	LP
25498-49-1, 29387-86-8, 29911-28-2, 88917-22-0)		

(註)

担当国の略号は BE:ベルギー、CH:スイス、DE:ドイツ、FR: フランス、JP:日本、KO:韓国、US:米国である。ICCA は国際化学工業協会協議会による原案提出を示す。 eu は、欧州共同体でのリスク評価をもとにしたことを示す。合意結果において、FW は追加の調査研究作業が必要であることを、LP は現状では追加作業の必要がないことを示す。HH はヒトへの健康影響、ENV は環境影響についての部分を示し、-は合意に達しなかったことを示す。